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We present a compact artificial viscosity for staggered grid Lagrangian hydrodynamics on
polygonal cells in two Cartesian dimensions and using a decomposition into triangles we
show that this viscosity is equivalent to a tensor viscosity of Campbell and Shashkov for
quadrilaterals.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

One distinguishing feature of staggered Lagrangian schemes is the existence of two sets of quantities: nodal variables and
cell variables. The nodal variables are identified by a global nodal index set, likewise the cell variables by a global cell index
set. The actual logical and functional relations among nodal quantities and cell quantities will depend on and be defined by
each particular application. Each node possesses a time-invariant mass mi, a position vector Xi, a velocity vector Ui

dXi
dt ¼ Ui

� �
,

and a force vector fi, whereas the cell variables include time-invariant cell masses mj (with
P

im
i ¼

P
jmj), volumes Vj (given

functions of the nodal positions), densities qj, specific internal energies ej, and cell thermodynamic pressures pj. The force at
each node is the sum of the force contributions from the cells that have the node as a vertex. Thus, a semi-discrete system of
equations for momentum is
mi dUi

dt
¼ f i ¼

X
j

gij; ð1Þ
where gij is zero if node i is not a vertex of cell j, and otherwise gij is the contribution of cell j to the force at node i.
The focus of this note is on these cell force contributions. So, consider a single polygonal cell (in two cartesian dimen-

sions), or a subcell with nodes labelled i = 1, . . . , I. Each edge of this polygon has an outward pointing normal with magnitude
equal to the magnitude of the edge. The force on the edge is the cell pressure p times this normal. Let ni be the average of the
two normal vectors of the edges that have node i as a common endpoint. The pressure force contribution at node i is then
(suppressing the cell index j)
gi ¼ pni: ð2Þ
Note that momentum is conserved, that is, the sum of the force contributions is zero, since
X
i

ni ¼ 0: ð3Þ
. All rights reserved.
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It is well-known that a viscous force must be added to the pressure force, if for no other reason than to increase entropy in
shocks.

The need for a viscous force and some possible forms it might take are indicated in [1], and [2] based on a discretization of
the divlgradU. In this note we give a compact definition of a possible viscous force and we show that it is exactly the same as
the Campbell–Shashkov viscosity.

2. The viscous force

The proposed viscous force at node i that is to be added to pni in (1) is
�l
V

XI

k¼1

ðni � nkÞUk; ð4Þ
where V is the volume of the polygon, and l is a non-negative scalar factor associated with the polygon having dimension of
density times velocity times length. Note that a low order approximation of the gradient of velocity in the polygon is the
dyadic matrix
X

k

Uknk � VGRADðUÞ ð5Þ
so that (4) generalizes the scalar pressure multiplying the normal vector to a matrix operating on the normal.
We require three key properties of the viscous forces. First, momentum should be conserved. Second, the force should

vanish if the cell nodal velocities are equal. Third, this force should be dissipative. By (3), the first two are clearly satisfied.
For this note it suffices to define dissipation as meaning that the viscous forces do not increase the total kinetic energy of
the nodes of the whole domain. Since the kinetic energy of a node is determined by
mi dUi

dt
� Ui ¼

X
i

f i � Ui; ð6Þ
it is clearly sufficient that for each cell
X
i

X
k

ni � nkUk � Ui P 0: ð7Þ
This is the case since
0 6 V2GRADðUÞ : GRADðUÞ ¼
X

i

X
k

ni � nkUk � Ui: ð8Þ
(Note that in a total energy conserving version of staggered grid Lagrangian hydrodynamics necessarily mj
dej

dt þ
P

if i � Ui ¼ 0,
so that the cell internal energy is not decreased by the viscous force.)

3. The Campbell–Shashkov subcell tensor viscosity

We will show that for a quadrilateral cell the Campbell–Shashkov viscosity [1] is equivalent to decomposing the cell into
triangles, applying (4) to each triangle, and averaging the resulting force contributions at each node. A different derivation
using finite elements to approximate divl gradU can be found in [2].

Consider a quadrilateral with nodes 1, 2, 3, 4 are arranged in counter-clockwise order. Consider node 1. Nodes 1, 2, and 4
form a triangle. Adopting the notation in [1], identify point 1 as point p, point 2 as p + 1, and point 4 as p � 1 of the triangle.
The triangle has volume Vp and assigned coefficient lp. The viscous force increments at the three nodes are
dfp�1 ¼ �:5
lp

Vp

Xpþ1

k¼p�1

np�1 � nkUk ð9Þ

dfpþ1 ¼ �:5
lp

Vp

Xpþ1

k¼p�1

npþ1 � nkUk ð10Þ

dfp ¼ �:5
lp

Vp

Xpþ1

k¼p�1

np � nkUk ¼ �dfp�1 � dfpþ1: ð11Þ
Now, go back to the quadrilateral indexing, that is, set df4 = dfp�1, df2 = dfp+1, df1 = dfp. Now repeat this for the triangles with
apex at 2, then 3, then 4, and add the increments of the quadrilateral nodal forces to get the final values. Note that there will
be a different value of l for each triangle. Note also that implicit in the above (and in [1] and [2]) is the assumption that the
quadrilateral is convex so that Vp > 0 for all the triangles.

To see that this is the Campbell–Shashkov viscosity, first introduce the edge normals
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np;p�1
and note that the triangle nodal normals satisfy
np�1 ¼ �:5np;pþ1 ð12Þ
npþ1 ¼ �:5np;p�1 ð13Þ
np ¼ :5ðnp;p�1 þ np;pþ1Þ ð14Þ
to get
dfp�1 ¼
:5lp

4Vp
½ðUp � Up�1Þnp;pþ1 � np;pþ1 þ ðUp � Upþ1Þnp;p�1 � np;pþ1� ð15Þ

dfpþ1 ¼
:5lp

4Vp
½ðUp � Up�1Þnp;pþ1 � np;p�1 þ ðUp � Upþ1Þnp;p�1 � np;p�1�: ð16Þ
Next, introduce the edge tangent vectors pointing from p to p ± 1
lp;p�1
and eliminate the normals using
jnp;p�1j ¼ jlp;p�1j ð17Þ
np;pþ1 � np;p�1 ¼ lp;pþ1 � lp;p�1: ð18Þ
From [2]
jlp;pþ1j2jlp;p�1j2 sin2 hp ¼ V2
p ð19Þ
and
jlp;pþ1klp;p�1j cos hp ¼ lp;pþ1 � lp;p�1; ð20Þ
where hp is the angle at the apex p, we obtain
dfp�1 ¼
lpVp

8jlp;p�1j sin2 hp

Up � Up�1

jlp;bfp�1j
þ cos hp

Up � Upþ1

jlp;pþ1j

� �
ð21Þ

dfpþ1 ¼
lpVp

8jlp;pþ1j sin2 hp

Up � Upþ1

jlp;pþ1j
þ cos hp

Up � Up�1

jlp;p�1j

� �
ð22Þ
which, together with (11), is Campbell–Shashkov.

4. Comments

The decomposition of quadrilaterals into triangles is quite natural, and edge velocity differences appear as a consequence
of momentum conservation, but what subcell decomposition is appropriate for other polygonal grids is not clear, and the
extension to r � z geometry is even less so. Whether or not this viscosity is effective depends entirely on how l is defined,
and that issue is explored thoroughly in [1,2].

Acknowledgements

The author thanks Mikhail (Misha) Shashkov for sharing his insights and expertise on Lagrangian methods.
This work was performed under the auspices of the National Nuclear Security Administration of the US Department of

Energy at Los Alamos National Laboratory, under Contract W-7405-ENG-36 and Contract DE-AC52–06NA25396. The author
acknowledges the partial support of the DOE Advance Simulation and Computing (ASC) Program and the DOE Office of Sci-
ence ASCR Program, and the Laboratory Directed Research and Development program (LDRD) at the Los Alamos National
Laboratory.

References

[1] J.C. Campbell, M.J. Shashkov, A tensor artificial viscosity using a mimetic finite difference algorithm, J. Comp. Phys 172 (2001) 739–765.
[2] T.V. Kolev, R.N. Rieben, A tensor artificial viscosity using a finite element approach, J. Comp. Phys 228 (2009) 8336–8366.


	A compact artificial viscosity equivalent to a tensor viscosity
	Introduction
	The viscous force
	The Campbell–Shashkov subcell tensor viscosity
	Comments
	Acknowledgements
	References


